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Dual Field Theory of Strong Interactions 

D a v i d  A k e r s  ~'2 

Received March I0, 1987 

A dual field theory of strong interactions is derived from a Lagrangian of the 
Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 
2397 MeV and Dirac charge g=(137/2)e is incorporated into the theory. 
Unification of the strong, weak, and electromagnetic forces is shown to converge 
at the mass of the intermediate vector boson W • The coupling constants of the 
strong and weak interactions are derived in terms of the fine-structure constant 
a = 1/137. 

1. I N T R O D U C T I O N  

In a recent paper  (Akers, 1986), evidence was presented for  the 
existence o f  a magnet ic  monopo le  of  mass 2397 MeV and Dirac charge 
g = ( 1 3 7 / 2 ) e .  From the at tempt to reconcile its existence with grand 
unification theories (GUT),  the low-mass magnet ic  monopo le  was incorpor-  
ated into a dual field theory  o f  the strong interactions called magnetos t rong 
theory. The idea that magnet ic  charge accounts  for the existence o f  strong 
forces in nature has its beginnings with Schwinger 's  magnet ic  model  o f  
matter  (Schwinger,  1969) and later with Barut 's  model  o f  hadrons  (Barut, 
1971a,b). 

The present  investigation is inspired by the results o f  magnetos t rong 
theory (Akers, 1986), which yields calculations o f  the strong coupl ing 
constant  as in excellent agreement  with experimental  data. In  this paper  it 
is suggested that a gauge theory o f  SU(3)  magnet ic  monopoles  allows for  
the existence o f  scalar mesons as exchange particles in strong interactions 
and for the appearance  o f  vector bosons  in weak interactions. 

In Section 2 the exchange particles in strong interactions are argued 
to be ~-~ mesons. The electron is treated as an isovector particle in isospin 
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space.  In  Sect ion 3 the magne t i c  m o n o p o l e  is t rea ted  as an i sovector  par t ic le ,  
and  we der ive  the same results  for  the ~r ~ meson  mass  as found  in Sect ion 
2. In  Sect ion 4 we der ive the  fundamen ta l  coupl ing  constants  o f  the s t rong 
and  weak  in terac t ions  in terms o f  the f ine-structure cons tan t  a = 1/137. 
Conc lud ing  remarks  are m a d e  in Sect ion 5. 

2. E L E C T R O N S  AS I S O V E C T O R  P A R T I C L E S  IN I S O S P I N  S P A C E  

In this section,  it will  be a rgued  that  ~r • mesons  are the exchange  
par t ic les  o f  the s t rong in terac t ion .  Elec t rons  will  be  t rea ted  as i sovector  
par t ic les  ( I  = 1) in o rde r  to der ive the mass  o f  the pions.  This ass ignment  
of  i so top ic  sp in  to the e lec t ron  is based  u p o n  the conserva t ion  o f  e lectr ic  
charge and  the conserva t ion  o f  i so top ic  sp in  in s t rong in teract ions .  As shown 
in Table  I, the quan tum numbers  Q/e  and  /3 are re la ted  th rough  the 
G e l l - M a n n - N i s h i j i m a  fo rmula  Q/e  = I3+�89 where  B = S = 0 .  The 
only  mesons  with B = S = 0 and  I = 1 are p ions .  Therefore ,  in o rde r  to 
conserve i so top ic  spin,  the  e lec t ron is a s s i g n e d / 3  = - 1 .  

The e lec t ron is chosen  to be an i sovector  par t ic le  in i sosp in  space  and  
a fe rmion  in phys ica l  space.  There  shou ld  be no difficulty with stat ist ics,  
s ince we are dea l ing  in two different  spaces.  The  in t roduc t ion  o f  a " s t rong  
i sosp in"  /3 = - 1  for the  e lec t ron  is ana logous  to Weinbe rg ' s  i n t roduc t ion  
o f  a " w e a k  i sosp in"  /3 = - �89  for  the  e lec t ron  in S U ( 2 )  • U(1) (Weinberg ,  
1967, 1971). Later,  I will  d iscuss  how the m o d e l  can incorpora t e  g luons  to 
der ive a co lo r  SU(3)c  theory.  

First ,  cons ide r  the Y a n g - M i l l s  and  Higgs fields with a Lagrang ian  
dens i ty  (Yang and  Mills ,  1954; ' t  Hoof t ,  1971a): 

1 a a 1 
= --~G.,,G~,, --~D.QaD.Q~, (1) 

Table 1. Quantum Numbers Q/e and 13 Assign- 
ed for Isovector (I = 1) Particles in Our Model 

of the Strong Interaction ~ 

Quantum number 

Q~ e 13 Particle 

+1 +1 ~r +, e +, W + 
-1 -1 ~r , e - ,W 
0 0 G, % v e 

~Although W • is involved in weak interactions, 
quantum numbers are given for it because our 
SU(3) coupling converges with SU(2)• U(1) 
at the mass of the vector boson W • Here G = 
gluon. 
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where 

a 1 b c G~. = a. W: - a . W .  +]eeabcW. W~ (2) 

and the covariant derivative is 

1 b 
D.Oa = 0 . 0 .  +'~eeab~W. O~ (3) 

a 

W~ is a triplet of isovector fields (Ix = 0 , . . . ,  3 spacetime indices; a = 1,2,3 
isospace indices), and the Higgs field Qa is a triplet of isovector fields 
(Ryder, 1985). The Lagrangian density in equation (1) has a massless Higgs 
particle MH = 0; however, there is a symmetry-breaking mechanism due to 
the Higgs field 0 ,  (Higgs, 1966; Kibble, 1967). For the electron, the tensor 
G~, and the covariant derivative apply to a spin-�89 field in physical space 
and to an isospin-1 field in isospin space (Goddard and Olive, 1978). Since 
we are dealing with a spin-�89 field in physical space, the Dirac quantization 
condition is satisfied (Dirac, 1931): 

eg=lnhc, n =0,  + 1 , . . .  (4) 

where g = (137/2)e is the magnetic charge of the magnetic monopole. 
We consider first the electrons as shown in Figure 1. The Qa receives 

a nonzero expectation value: 

(0o) 2 = F 2 (5) 

and the electron mass is given by the coupling 

me = eF (6) 

The Lagrangian in equation (1) gives a particle mass spectrum with ~r ~ 
mesons as the exchange particles of the strong interaction in Figure 1. The 
solution of the field equations is assumed to be time-independent and 
spherically symmetric ('t Hooft, 1974). The Lagrangian in equation (1) is 
transformed by introducing the vector 

2 ~ r 2  r. = (x,y,z), r~ 

and writing 

Oa(x,t) = raQ(r), W~.(x,t) = e,,abrbW(r) (7) 

Fig. 1. ~r ~ mesons  are the exchange  par t ic les  
of  the s t rong in terac t ion  for the c rea t ion  of  

magne t ic  monopo les .  

[~+_ 
I 
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where e.,.,,ab are the structure constants of  the gauge group, with eoa b : 0 and 
a = 1,2,3. The Lagrangian becomes 

, , , . 4 .  I r',rr ' . ' [ \ dr ] - 4 r W - - ~ - r - 6 W  - e r  W 3 
., a o 

1 2 _ _ e 2 r 4 W 4 1 r 2 ( d Q ~  d Q  3 2 2. ~ 2  1 2 4  2 2 -] 
8 2 \ d r /  - r t J - ~ r - 2 ~  - e r  w v - ~ e  r W Q j 

(8) 
't Hooft  has studied the boundary condition at r ~  co for Q(r) and W(r). 
He finds for the fields ('t Hooft,  1974) 

W~(x,t) = -(e,ab/er2)rb, W(r) = - 1 / e r  2 

and 

Qa (x,t) = (F/r)ra, Q(r) = F / r  

The mass of  the ~r • mesons is given by E = - L .  Introducing the dimension- 
less parameters 

w=2W(r) /FEe ,  q=2Q/F2e ,  x = l e F r  

we obtain for the mass of  the ~r • mesons (in rationalized units) 

2me [~ 2 [ 2f dw~ 2 dw 2 2 3  1 4 4  M~-=-L=-yIo x dx L ~ k ~ x )  +4XW-d-s +x  w +-x8 w 

+�89 2 ._~ .  +xq-~xt-~q * x  wq *Zx w q J (9) 

The solution of this integral has been done by Prasad and Sommerfield 
(1975). The integral is evaluated to be 1.0 for a massless Higgs particle 
MH = 0. Therefore, the mass of  the 7r • mesons is 

M ~  = 2me/e 2= 137(2me) = 140.0 MeV (10) 

The solution in equation (10) is within 0.31% of the experimental value: 
M=• = 139.57 MeV (Particle Data Group,  1986). The result of  equation (10) 
suggests that a renormalization of the Lagrangian might improve the calcula- 
tions ('t Hooft,  1971b). Renormalization could include other exchange 
particles (i.e., K mesons, gluons, dyons, etc.) in the strong interaction. 

a 
Introduction of gluons with a = 1 , . . . ,  8 in the field tensor G,~ would allow 
for a color SU(3)~ theory of strong interactions (Ryder, 1985; 't Hooft,  1976). 

3. MAGNETIC M O N O P O L E S  AS ISOVECTOR PARTICLES 

In this section, magnetic monopoles are treated as isovector particles 
in isospin space as shown in Table II. In order to derive the mass of  the 
7r • mesons, Maxwell 's equations become 

o,.F.~=j, o.P..=g~ (11) 
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Table II. Quan tum numbers  M/g and 13 
Assigned to Magnetic Monopoles  g• " 

Quan t um number  

M / g 13 Particle 

+1 +1 g+ 
- 1  - 1  g -  
0 0 G,y, vg 

~M/g is analogous to Q/e. Here vg is a magnetic- 
monopole  type neutrino, which is predicted to 
exist by Lochak (t985). G =gluon .  

where F ~  is the dual tensor field, j~ represents the sources of electric 
charges, and g~ represents the sources of magnetic charges. / ~  replaces 
G~, in the Lagrangian in equation (1). The magnetic monopole has a mass 
given by the coupling 

Mg = gF (12) 

and by using the dual symmetry (Montonen and Olive, 1977) 

e ~ g ;  g ~ - e  (13) 

The field tensor (2) becomes 

~a a a 1 b c F ~  = O~ W~ -O~W~ +~geabcW~ W~ (14) 

and the covariant derivative becomes 

+-2geabcW, Qc (15) D g Q . = o . Q .  1 b 

By substituting equations (14) and (15) into the Lagrangian (1), we 
can follow the same mathematical treatment as in the last section and derive 
the mass of the 7r ~ mesons as 

M ~  = (1/g2)(2Mg) (16) 

For a coupling constant g2/hc = 137/4 and a magnetic monopole mass 
Mg = 2397 MeV from the experimental evidence (Akers, 1986), we have 

M ~  = (4/137)(2Mg) = 140.0 MeV (17) 

This is the same result as in equation (10) and is to be expected since the 
7r ~ mesons are the exchange particles in this model. Equations (10) and 
(16) suggest that the magnetic monopole mass is related to the electron 
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mass by 

1 ! 
(2Mg) =~'~ (2me) g2 

o r  

g2 (1 7)2 
 =Tme= - -  me 

which is the result found through different means by Amaldi (1968). 

Akers 

(18) 

4. UNIFICATION OF THE STRONG, ELECTROMAGNETIC,  
AND WEAK COUPLINGS 

In efforts to unify the strong, weak, and electromagnetic forces, Georgi 
and Glashow have suggested that a true unification would involve only one 
coupling strength, the fine-structure constant (Georgi and Glashow, 1974). 
In this section, the fundamental couplings of the strong and weak forces 
will be derived in terms of a = 1/137. Furthermore, we will show why the 
masses of the intermediate vector boson W and the electron are so disparate 
(Mw/rne = 1.6 • 105) as pondered by Llewellyn Smith (1983). 

We start with the gauge theory of 't Hooft, in which the intermediate 
vector bosons W • are chosen as isovector particles and in which magnetic 
monopoles are admitted as solutions of the Lagrangian ('t Hooft, 1974). 
However, we use the dual field tensor (14) for spin-1 bosons: 

" a  a a b c F ~  = O~ W~ -O~W~ + geabcW~ Wv (19) 

and a covariant derivative 

D~,Qa -- o~Qa + geabcWb Qc (20) 

The mass of the vector boson W ~ becomes 

Mw ~ = gF (21) 

Introducing the results (19) and (20) into the Lagrangian (1), we follow 
again the same mathematical treatment as in Section 2 and derive the mass 
of the magnetic monopole as 

Mg = (1/g2)Mw (22) 

for the SU(3) magnetic monopoles in our model (Weinberg, 1973; Gross 
and Wilczek, 1973). 

From a coupling constant g2/fic= 137/4 and a magnetic monopole 
mass Mg = 2397 MeV, we have 

M w  • = (137/4)Mg = 82.1 GeV (23) 
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This result is within 0.36% of the experimental value M w - = 81.8 + 1.5 GeV 
(Particle Data Group, 1986). Actually, the result (23) is within experimental 
uncertainty: 82.1 - 81.8 = 0.3 GeV. 

We can introduce the result of (18) into (22) and obtain 

M w • = (g 4/ e2)me = ~-(137/2)3me (24) 

The mass of the intermediate vector boson W is given in terms of the 
fine-structure constant a -- 1/137 and the electron's mass me--two funda- 
mental constants. From (24), we have 

M w / m e  =�89 3 = 1.6 x 105 

which is the result pondered by Llewellyn Smith (1983). 
To calculate the weak coupling constant Gw in terms of the fine- 

structure constant, we turn to the electroweak model by Weinberg (1967, 
1971). The mass of the vector boson W in Weinberg's model is 

1 t/ M w  =~meg / Ge (25) 

where the e-~b coupling constant Ge=2 .07•  -6 and Ge=21/4me G1/w 2 
(Weinberg, 1967). Combining (24) with (25), we obtain 

g ' =  ~ Ge=0-665  

or  

Ge = 0.665(2ce) 3 

The weak coupling constant is 

G 2 (0.665)z(2c~) 6 
G w -  1/2_.2 - 1/2~.2 

2 ,he 2 t t ,  e 

We can see that the coupling charge g '  = 2e, and the weak coupling constant 
is then 

(2/3)2(2006 
G w =  1/2 2 - 1 . 1 6 5 x 1 0  -SGeV -2 

2 rne 

The accepted value is Gw = 1.16637 x 10 -5 GeV -2 (Particle Data Group, 
1986). Thus, we have derived the weak coupling constant Gw in terms of m 

Finally, the strong coupling constant a, can be derived from the results 
of magnetostrong theory by Akers (1986). The strong coupling constant was 
found to agree with experimental data when 

a, = 2Mg/ E (26) 
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a-a 

C 

�9 

c33 
c- 

O.  

0 
r j  

34.25 

1.0 

0.059 

i~ SU(3) 

I Mx-+ 12Mg I MW+ 

(in units of m e ) 

Fig. 2. The coupling constant as a function of  the center-of-mass energy (in units of  me). 
The SU(3)  model  of  this paper allows for w ~ mesons as the exchange particles of  the strong 
interaction and for W • bosons in the weak interaction. The coupling constant converges at 
the mass of  the intermediate vector boson M w ~ .  

where E is the center-of-mass energy. Mg =2397 MeV is the magnetic 
monopole mass. For a strong coupling constant on the order of unity, 

E' = 2Mg =2(137/2)2me 

o r  

Thus, 

E = [2/(2a)2]m~ (27) 

a s = ( 2 o l ) 2 M g / m e  ( 2 8 )  

The idea that the strong forces of nature are due to magnetic charge was 
first suggested by Schwinger (1969) and later by Barut (1971a). 

5. CONCLUSION 

We summarize the results for particle masses in this paper: 

M~• = 137(2me) = 2a-lme 
Mg = (137/2)2me = (2a)-2me 

M w • = �89 = �89 
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7r ~ mesons,  magnetic monopoles ,  and vector bosons  W • are fundamentally 
based upon the fine-structure constant a and the electron's mass me- - two  
fundamental constants. The coupling constant in our SU(3)  model  is shown 
in Figure 2. The strength of  the coupling constant between magnetic 
monopoles  is large: 

Olg = g2/ hC = 3 4 . 2 5  

As shown in Figure 2, this is the strength of  our SU(3)  model  with a 
center-of-mass energy equal to the mass o f  the ~r ~ mesons.  The strong 
SU(3)  coupling converges with SU(2)  x U(1) at the mass of  the intermediate 
vector boson  W • which agrees with the earlier results o f  magnetostrong 
theory by Akers (1986). 
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