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Dual Field Theory of Strong Interactions

David Akers'?
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A dual field theory of strong interactions is derived from a Lagrangian of the
Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass
2397 MeV and Dirac charge g=(137/2)e is incorporated into the theory.
Unification of the strong, weak, and electromagnetic forces is shown to converge
at the mass of the intermediate vector boson W=, The coupling constants of the
strong and weak interactions are derived in terms of the fine-structure constant
a=1/137.

1. INTRODUCTION

In a recent paper (Akers, 1986), evidence was presented for the
existence of a magnetic monopole of mass 2397 MeV and Dirac charge
g=(137/2)e. From the attempt to reconcile its existence with grand
unification theories (GUT), the low-mass magnetic monopole was incorpor-
ated into a dual field theory of the strong interactions called magnetostrong
theory. The idea that magnetic charge accounts for the existence of strong
forces in nature has its beginnings with Schwinger’s magnetic model of
matter (Schwinger, 1969) and later with Barut’s model of hadrons (Barut,
1971a,b).

The present investigation is inspired by the results of magnetostrong
theory (Akers, 1986), which yields calculations of the strong coupling
constant ¢, in excellent agreement with experimental data. In this paper it
is suggested that a gauge theory of SU(3) magnetic monopoles allows for
the existence of scalar mesons as exchange particles in strong interactions
and for the appearance of vector bosons in weak interactions.

In Section 2 the exchange particles in strong interactions are argued
to be 7™ mesons. The electron is treated as an isovector particle in isospin
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space. In Section 3 the magnetic monopole is treated as an isovector particle,
and we derive the same results for the 7" meson mass as found in Section
2. In Section 4 we derive the fundamental coupling constants of the strong
and weak interactions in terms of the fine-structure constant « =1/137.
Concluding remarks are made in Section 5.

2. ELECTRONS AS ISOVECTOR PARTICLES IN ISOSPIN SPACE

In this section, it will be argued that = mesons are the exchange
particles of the strong interaction. Electrons will be treated as isovector
particles (I =1) in order to derive the mass of the pions. This assignment
of isotopic spin to the electron is based upon the conservation of electric
charge and the conservation of isotopic spin in strong interactions. As shown
in Table I, the quantum numbers Q/e and I; are related through the
Gell-Mann-Nishijima formula Q/e=I,+3(B+S), where B=S=0. The
only mesons with B=S=0 and I =1 are pions. Therefore, in order to
conserve isotopic spin, the electron is assigned I, = —1.

The electron is chosen to be an isovector particle in isospin space and
a fermion in physical space. There should be no difficulty with statistics,
since we are dealing in two different spaces. The introduction of a “strong
isospin” I; =—1 for the electron is analogous to Weinberg’s introduction
of a “weak isospin” I;= —3 for the electron in SU(2)x U(1) (Weinberg,
1967, 1971). Later, 1 will discuss how the model can incorporate gluons to
derive a color SU(3). theory.

First, consider the Yang-Mills and Higgs fields with a Lagrangian
density (Yang and Mills, 1954; ’t Hooft, 1971a):

1 ., . 1
Z= _ZG[.LVG}LV _EDanD;LQa (1)
Table 1. Quantum Numbers Q/e and I; Assign-

ed for Isovector (I =1) Particles in Our Model
of the Strong Interaction®

Quantum number

Q/e I Particle
+1 +1 wt,et, WF
-1 -1 o ,e, W™
] 0 G,v,ve

¢Although W= is involved in weak interactions,

quantum numbers are given for it because our
SU(3) coupling converges with SU(2)x U(1)
at the mass of the vector boson W*. Here G =
gluon.
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where
a a a 1 b 4
GW———&,LW,,—a,WH-FEeaach“ we, (2)
and the covariant derivative is

1
D;J.Qa zayQa+Ee8achZQc (3)

W7, is a triplet of isovector fields (n =0, ..., 3 spacetime indices; a =1,2,3
isospace indices), and the Higgs field Q, is a triplet of isovector fields
(Ryder, 1985). The Lagrangian density in equation (1) has a massless Higgs
particle My = 0; however, there is a symmetry-breaking mechanism due to
the Higgs field Q, (Higgs, 1966; Kibble, 1967). For the electron, the tensor
G4, and the covariant derivative apply to a spin- field in physical space
and to an isospin-1 field in isospin space (Goddard and Olive, 1978). Since
we are dealing with a spin-; field in physical space, the Dirac quantization
condition is satisfied (Dirac, 1931):

eg =snhc, n=0,%1,... 4)

where g =(137/2)e is the magnetic charge of the magnetic monopole.
We consider first the electrons as shown in Figure 1. The Q, receives
a nonzero expectation value:

(Q.)*=F? (5)
and the electron mass is given by the coupling
m, =eF (6)

The Lagrangian in equation (1) gives a particle mass spectrum with 7~
mesons as the exchange particles of the strong interaction in Figure 1. The
solution of the field equations is assumed to be time-independent and
spherically symmetric ("t Hooft, 1974). The Lagrangian in equation (1) is
transformed by introducing the vector

ra = (x’y,z)3 ri = r2
and writing
Qa(x:t) = raQ(r)’ W,lal.(xat) = Ey.aber(r) (7)

Fig. 1. 7™ mesons are the exchange particles I

of the strong interaction for the creation of _/J\_“\ —
e g

magnetic monopoles.
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where ¢,,, are the structure constants of the gauge group, with g4,, =0 and
a=1.273. The Lagrangian becomes

® dw\? w
L=J$d3x=4wj r?dr [—rz(————) —4rWd—~6W2—er2W3
0 dr dr

2
—%e2r4 w* —%r{j—?) - rQ%—?—%Qz —er? WQ? —‘1—1e2r4 Wzszl
(8)
't Hooft has studied the boundary condition at r—» 0 for Q(r) and W(r).
He finds for the fields (’t Hooft, 1974)

Wa(x,t) = —(&,0n/ )15, W(r)=—1/er?
and
Qu(x,1)=(F/r)rs,  Q(r)=F/r
The mass of the 7= mesons is given by E = — L. Introducing the dimension-
less parameters

w=2W(r)/F’e, q=2Q/F%, x=3%eFr
we obtain for the mass of the #* mesons (in rationalized units)

2m, [® dw\’ d 1
Mﬂ:=—L=—rl:5J x> dx [xz(—w> +dxw L+ 6w+ xPw? Foxtw
e Jo dx dx 8

dq\’ dq 3
+320 L) o+ _+_2+2 241,422
2% ( dx) xXq o T4 xXTwetaxwig )

The solution of this integral has been done by Prasad and Sommerfield
(1975). The integral is evaluated to be 1.0 for a massless Higgs particie
M,; = 0. Therefore, the mass of the 7~ mesons is

M ==2m,/e*=137(2m,) = 140.0 MeV (10)
The solution in equation (10) is within 0.31% of the experimental value:
M == 139.57 MeV (Particle Data Group, 1986). The result of equation (10)
suggests that a renormalization of the Lagrangian might improve the calcula-
tions ('t Hooft, 1971b). Renormalization could include other exchange
particles (i.e., K mesons, gluons, dyons, etc.) in the strong interaction.
Introduction of gluons with a=1, ..., 8 in the field tensor G}, would allow
for a color SU(3). theory of strong interactions (Ryder, 1985; ’t Hooft, 1976).

3. MAGNETIC MONOPOLES AS ISOVECTOR PARTICLES

In this section, magnetic monopoles are treated as isovector particles
in isospin space as shown in Table II. In order to derive the mass of the
7* mesons, Maxwell’s equations become

-~

8 Fos = jun 0. F,.. =g (11)

pd py
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Table II. Quantum numbers M/g and I
Assigned to Magnetic Monopoles g* ¢

Quantum number

M/g I Particle
+1 +1 g*
-1 -1 g

0 0 G, v, v

“M /g is analogous to Q/e. Here v, is a magnetic-
monopole type neutrino, which is predicted to
exist by Lochak (1985). G = gluon.

where I:"w, is the dual tensor field, j, represents the sources of electric
charges, and g, represents the sources of magnetic charges. 1:“‘“, replaces
G4, in the Lagrangian in equation (1). The magnetic monopole has a mass
given by the coupling

M, =gF (12)
and by using the dual symmetry (Montonen and Olive, 1977)
e>g; go—e (13)
The field tensor (2) becomes
Fl =0, Wi=3,Wi+igea WL W, (14)
and the covariant derivative becomes
D,Q.=3,Qu 388w W, Qe (15)

By substituting equations (14) and (15) into the Lagrangian (1), we
can follow the same mathematical treatment as in the last section and derive
the mass of the #* mesons as

M -=(1/g")(2M,) (16)

For a coupling constant g°/#c=137/4 and a magnetic monopole mass
M, =2397 MeV from the experimental evidence (Akers, 1986), we have

M == (4/137)(2M,) = 140.0 MeV (17)

This is the same result as in equation (10) and is to be expected since the
7~ mesons are the exchange particles in this model. Equations (10) and
(16) suggest that the magnetic monopole mass is related to the electron
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mass by
1 1
?(2Mg)=?(2me)
or
g’ 137\’
Mg=? me=(7> m, (18)

which is the result found through different means by Amaldi (1968).

4. UNIFICATION OF THE STRONG, ELECTROMAGNETIC,
AND WEAK COUPLINGS

In efforts to unify the strong, weak, and electromagnetic forces, Georgi
and Glashow have suggested that a true unification would involve only one
coupling strength, the fine-structure constant (Georgi and Glashow, 1974).
In this section, the fundamental couplings of the strong and weak forces
will be derived in terms of @ =1/137. Furthermore, we will show why the
masses of the intermediate vector boson W and the electron are so disparate
(My/m,=1.6x10) as pondered by Llewellyn Smith (1983).

We start with the gauge theory of 't Hooft, in which the intermediate
vector bosons W™ are chosen as isovector particles and in which magnetic
monopoles are admitted as solutions of the Lagrangian ("t Hooft, 1974).
However, we use the dual field tensor (14) for spin-1 bosons:

Fo,=0,Wi=3,We+ge, Wo WS (19)
and a covariant derivative
D,Qa=0,Qa+82ar. W, Qe (20)
The mass of the vector boson W* becomes
My==gF (21)

Introducing the results (19) and (20) into the Lagrangian (1), we follow
again the same mathematical treatment as in Section 2 and derive the mass
of the magnetic monopole as

M, =(1/g" )My, (22)

for the SU(3) magnetic monopoles in our model (Weinberg, 1973; Gross
and Wilczek, 1973).

From a coupling constant g?/#c=137/4 and a magnetic monopole
mass M, =2397 MeV, we have

M == (137/4)M, = 82.1 GeV (23)
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This result is within 0.36% of the experimental value M y==81.8+£1.5 GeV
(Particle Data Group, 1986). Actually, the result (23) is within experimental
uncertainty: 82.1 —-81.8 =0.3 GeV.

We can introduce the result of (18) into (22) and obtain

My =(g"/e*)m, =3(137/2)’m, (24)

The mass of the intermediate vector boson W is given in terms of the
fine-structure constant a =1/137 and the electron’s mass m,—two funda-
mental constants. From (24), we have

My /m,=%(137/2)>=1.6x10°

which is the result pondered by Llewellyn Smith (1983).

To calculate the weak coupling constant Gy, in terms of the fine-
structure constant, we turn to the electroweak model by Weinberg (1967,
1971). The mass of the vector boson W in Weinberg’s model is

MW = %meg’// Ge (25)
where the e-¢ coupling constant G.=2.07x10"° and G, =2"*m, GV’
(Weinberg, 1967). Combining (24) with (25), we obtain

1 3
g = (2—> G, =0.665

a
or
G, =0.6652a)’
The weak coupling constant is

G (0.665)°(2a)°

G = _
W ol 2 212m?

We can see that the coupling charge g’ =3e, and the weak coupling constant
is then
_(2/3)Qa)° -5 may—2
Gw ~—217mz—- 1.165x107° GeV

The accepted value is Gy =1.16637x 10> GeV~? (Particle Data Group,
1986). Thus, we have derived the weak coupling constant Gy, in terms of a.

Finally, the strong coupling constant a, can be derived from the results
of magnetostrong theory by Akers (1986). The strong coupling constant was
found to agree with experimental data when

a,=2M,/E (26)
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34.25

Coupling Constant

(in units of me)

Fig. 2. The coupling constant as a function of the center-of-mass energy (in units of m,).
The SU(3) model of this paper allows for 7™ mesons as the exchange particles of the strong
interaction and for W= bosons in the weak interaction. The coupling constant converges at
the mass of the intermediate vector boson M y=.

where E is the center-of-mass energy. M, =2397 MeV is the magnetic
monopole mass. For a strong coupling constant on the order of unity,

E=2M,=2(137/2)’m,
or

E =[2/(2a)’]m, (27)
Thus,

a,=(2a) M,/ m, (28)

The idea that the strong forces of nature are due to magnetic charge was
first suggested by Schwinger (1969) and later by Barut (1971a).

5. CONCLUSION

We summarize the results for particle masses in this paper:
M, -=137(2m,)=2a 'm,
M, =(137/2)’m, = (2a) ’m,
M v+ =3(137/2)°m, =3(2a) >m,
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7~ mesons, magnetic monopoles, and vector bosons W™ are fundamentally
based upon the fine-structure constant & and the electron’s mass m,—two
fundamental constants. The coupling constant in our SU(3) model is shown
in Figure 2. The strength of the coupling constant between magnetic
monopoles is large:

a, =g’/ hc=34.25

As shown in Figure 2, this is the strength of our SU(3) model with a
center-of-mass energy equal to the mass of the 7* mesons. The strong
SU(3) coupling converges with SU(2) x U(1) at the mass of the intermediate
vector boson W™, which agrees with the earlier results of magnetostrong
theory by Akers (1986).
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